
 

  
Abstract—In this paper we propose a two-stage screening and 

analysis process for identifying multiple contingencies that may 
result in very severe disturbances and blackouts.  In a screening 
stage we form an optimization problem to find the minimum 
change in the network to move the power flow feasibility 
boundary to the present operating point and that will cause the 
system to separate with a user-specified power imbalance.  The 
lines identified by the optimization program are used in a 
subsequent analysis stage to find combinations that may lead to a 
blackout.  This approach is applied to a 30-bus system with 
encouraging results. 

Index Terms—Power System Security, Graph Partitioning 
 

I. INTRODUCTION 

In this paper we propose a two-stage screening and analysis 
process for identifying multiple contingencies that may result 
in very severe disturbances and blackouts.  Our work is 
motivated by the occurrences of such events and the complete 
lack of practical algorithms to anticipate them.  As a recent 
example, the August 14, 2003 blackout in the northeast of the 
U.S. resulted in a loss of estimated 61.8 GW of electric load 
and affected 50 million people [1]. The cost associated with 
this blackout was about $6 billion as estimated by the U.S. 
Department of Energy (DOE) [2]. While many factors 
contributed to the prevailing operating conditions on that 
afternoon, just three transmission lines that underwent faults 
and subsequent outages in relatively short succession initiated 
the blackout process. These line outages irreversibly 
overloaded the system and resulted in a very fast and dramatic 
blackout.  

Identification of such lines, removals of which eventually 
leads to a failure, is crucial to power system security.  The 
notion of “n-k” security is traditionally employed to identify 
the weakest components in a power system network. 
Conceptually, focusing only on lines for the moment, in a 
system having n transmission lines, k lines are removed from 
service to test whether a power flow solution exists for the 
new network topology. A process of analysis based on 
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complete enumeration becomes computationally prohibitive 
for large systems as k takes values greater than 2. 

More sophisticated analysis tools are thus required that can 
efficiently handle the issue of computational burden that the 
abovementioned method of enumeration encounters. This 
paper proposes one such approach that exploits results from 
spectral graph theory and it is cast as an optimization problem. 
Using a two-stage approach we identify a few transmission 
lines in a large power system network (graph) which, when 
cut, cause the power flow equations to not have a solution, 
possibly leading to a failure. With the initial screening stage 
approach we use, the graph is partitioned into subgraphs and 
the lines in the cut-set may be seen as elements of the network 
posing a threat to power system security.  A subsequent 
detailed analysis stage is then performed to identify those lines 
in the cut-set (stage 1) whose removal will result in a loss of 
feasibility. 

Our approach is partially motivated by the work of 
Alvarado, Dobson and Hu [3].  In their work they computed 
the closest point on the feasibility boundary to the present 
operating point.  That is, the minimum change in power 
injections that would result in operation at the edge of 
feasibility.  In our approach we ask: what is the smallest 
change in line characteristics that will move edge of the 
feasibility region to the present operating point. Note that for a 
given network topology, power flows have a continuous 
dependence on bus voltages V and phase angles θ. When 
transmission lines are removed from the network, the power 
flows change abruptly due to the changed network topology. 
Line outages thus introduce a discrete flavor into power flow 
equations.  We employ a relaxation that allows partial line 
outages. Examining partial line outages we can identify 
conditions when the feasibility region contracts to the present 
operating point.  This does not immediately provide the final 
solution to our problem of vulnerability identification, 
although it does provide a screening process to identify 
potentially important lines for further finer analysis. Lines 
identified during the screening process are typically few in 
number, which are then amenable to enumeration tool for “n-
k” security analysis or more sophisticated techniques such as 
combinatorial algorithms. 

Specifically we work with an optimization problem in terms 
of network active power. A similar optimization technique is 
employed by Salmeron, Wood and Baldick [15] where the 
security of electric grid under terrorist threat is analyzed. The 
critical elements of the grid are identified by maximizing the 
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long-term disruption in the power system operation caused by 
terrorist attacks based upon limited offensive resources. This 
problem is cast using a bilevel optimization framework. We 
use a relaxation to allow partial outages of system elements, 
while [15] uses mixed-integer programming. The optimization 
framework appears promising for such types of problems 
where the critical system elements that make the system 
vulnerable to failures must be identified. 

The paper is organized as follows. Section II summarizes 
graph theory preliminaries that provide a theoretical 
foundation for the mathematical formulation of the problem 
described in Section III. Application to the IEEE 30 bus 
system is presented in Section IV. Concluding remarks are 
included in Section V. 

II. SPECTRAL GRAPH THEORY PRELIMINARIES 
A review of concepts from spectral graph theory that are 

relevant to our work follows.  For a thorough treatment of the 
subject see, for example, [4, 5].  Given a graph G with m 
nodes and n directed edges or branches, the branch-node 
incidence matrix A of G is an n-by-m matrix with 

                 Ai,j  =   1 if  branch i originates at node j, 
                 Ai,j  =  -1 if branch i ends at node j, 
                 Ai,j  =   0 otherwise. 

Note that the sum of the elements in each row of A is equal to 
zero, so the vector e = [1 1 … 1]T is in the null space of A (i.e., 
Ae = 0).   

The Laplacian of the graph G is defined as the matrix ATA. 
If nonnegative weights βi, ni ,,1K= , are associated with the 
edges of the graph G, the weighted Laplacian is similarly 
defined as 

AdiagAL T
G )(!= , 

where β is a vector with its i-th element equal to βi. Note that a 
zero weight corresponds to two disconnected nodes in the 
graph. Furthermore, the Laplacian ATA is a special case of the 
weighted Laplacian, hence in what follows we only refer to a 
weighted Laplacian. 

A weighted Laplacian matrix LG has real, nonnegative 
eigenvalues. Note that zero is always an eigenvalue with 
corresponding eigenvector e = [1 1 … 1]T, since Ae = 0. Now, 
if the graph G is disconnected, then the spectrum of LG is 
given by the union of the spectra of the Laplacian matrices of 
the subgraphs, or connected components, of G. In particular, 
since the weighted Laplacian of each subgraph has a zero 
eigenvalue, it follows that the multiplicity of the zero 
eigenvalue of LG is equal to the number of connected 
components of G. Furthermore, information about the 
decomposition of the nodes of G into its connected 
components may be extracted from the eigenvectors 
corresponding to the zero eigenvalue of LG, as described next. 

Let us denote the number of connected components of G by 
η and define a set of vectors vi, !,,1K=i , such that the j-th 
element of vi is equal to 1 if node j is in the i-th connected 
component, and 0 otherwise. Note that the vectors vi form an 

orthogonal basis of eigenvectors corresponding to the zero 
eigenvalue of LG. A linear combination of the eigenvectors vi, 
viz., ! = "

#
,,1Ki

ii
v , provides e as an eigenvector, as expected, 

by setting each coefficient σi to 1. On the other hand, by 
setting jk !! " for jk ! , the linear combination results in 
an eigenvector that separates out the nodes of G into its 
connected components. Note that such eigenvector has 
identical elements at entries corresponding to nodes within a 
connected component. We denote this eigenvector as w for 
purpose of the discussion in Section III.  

III. PROBLEM FORMULATION 
This section discusses the power system model and 

mathematics underlying the process for identifying lines in a 
power network to which power system security is sensitive.  
We propose a two-stage process in which an initial screening 
stage (the main focus of this paper) is used to find a small set 
of candidate lines to be considered in a subsequent analysis 
stage, to identify combinations of line outages that may result 
in a severe disturbance.  In the screening stage several 
modeling simplifications are used to allow tractable analysis, 
including neglecting losses and ignoring issues related to 
reactive power and voltage.  It is possible to use a detailed 
model in the analysis (or second) stage and it may be 
beneficial to include dynamic analysis.  In this, our initial 
report on our work, we focus on a static power flow analysis, 
and intend to extend our results to more detailed models in our 
continuing work. 

A. Power System Model and Relaxation 
Consider a lossless power system network having m buses 

(nodes) and n lines (edges). Voltages at the buses are assumed 
to be fixed at their nominal values, i.e., 1 p.u. This assumption 
may be justified by the fact that the screening stage of analysis 
is only expected to identify a small number of lines to be 
considered for a detailed analysis at the later stage. Thus a 
simplistic view of a power system is sufficient for filtering out 
lines which do not play an important role in breaching system 
security. 

As bus voltages are fixed to 1 p.u., dependence of real 
power injections at buses on the network angle variables θ is 
fully described by active power flow constraints. Reactive 
power flow constraint is then unnecessary for our purpose. We 
represent real power flow equations in matrix form as it 
immediately brings in the aspects of the graph theory we need 
for analysis. Letting B denote a diagonal matrix with the 
values of line admittances1 on its diagonal, the power flowing 
through the lines can be compactly expressed as 

)sin( !ABP
line

= , 

where Pline is a vector of power flows over the lines, A is the 
branch-node incidence matrix of the graph, and sin(Aθ) 
denotes a vector with its i-th component equal to sin((Aθ)i). A 
vector of power injections P is then obtained by adding up the 

 
1 We assume a lossless system and consider lines that appear inductive, not 

capacitive. 



 

powers flowing out of the buses into the network. This is 
represented in matrix form as 

0)sin( =! PABA
T " ,      (1) 

with each component of Aθ taking values between -π/2 and 
+π/2 radians, as required for steady state stability. 

 Now consider a transmission line connecting any two 
buses. Reducing its admittance to zero is equivalent to 
removing that line from service. Thus admittances effectively 
provide a way to represent line outages by associating with 
them a set of variables ni

i
,,1, K=! , that can be used to 

indicate whether or not the i-th line is in service. For instance, 
the value of a modified admittance can be defined as the 
product of the admittance of line i with (1-γi). The modified 
admittance is then equal to the nominal admittance when 

0=
i
! , i.e., when the line is in service. On the other hand, it is 
zero when 1=

i
! , which corresponds to the i-th line being 

removed from service. The power flow model (1), now with 
modified admittances, can thus be represented as 

0)sin()( =!"! PAIBA
T # ,     (2) 

where Γ is a diagonal matrix having γi on its i-th diagonal 
element and I is the identity matrix.   

 It should be noted that P is regarded as fixed and that the 
variables in (2) are diag(Γ) and θ. Elements on the diagonal of 
Γ take on discrete values, either 1 or 0, representing operating 
status of the corresponding line. Figure 1 shows the schematic 
view of (2) in P space. When the line under consideration is in 
service, the curve shown by a solid line represents a feasibility 
boundary for the power flow constraint. The system operating 
point lies inside the feasible region. When the line is removed 
from service, the feasibility boundary comes closer to the 
operating point, making it more vulnerable to infeasibility or 
failure. It may so happen that removal of the line pushes the 
boundary past the operating point (dotted-lined curve), making 
system operation infeasible due to nonexistence of a power 
flow solution. Thus removing lines from the network 

 
Figure 1: Space of real power injections showing feasibility 

boundaries for various line statuses.  

effectively shifts the boundary of the feasibility region of 
solutions to (2), for a given operating point P. 

Referring to Figure 1, it is apparent that had γ been able to 
change continuously in the interval [0,1], the feasibility 
boundary could pass exactly through the operating point and 
the system failure will just occur. This situation is shown by a 
dashed curve representing the feasibility boundary. The power 
flow solution just vanishes and this occurs when the line is 
partially taken out of service with γ=γ*. In the screening stage 
of our analysis, we allow such partial line outages to occur. 
Equivalently, we relax the constraint that γi is a discrete 
variable taking values of 1 or 0, and allow it to take 
continuous values in the interval [0,1]. This makes the real 
power flow constraint equation (2) continuous in both θ and γ.  

Now, the Jacobian J of (2) with respect to θ, 

,))(cos()( AAdiagIBAJ T !"#=     (3) 

is identical in structure to a weighted Laplacian (Section II) 
since the entries on the diagonal of the matrix B(I-
Γ)diag(cos(Aθ)) are nonnegative (recall that 

niA
i

,,1,2/ K=! "# ). Thus, J has a zero eigenvalue.  This 
is also consistent with the fact that the power system network 
under consideration is (initially) connected.  

 It is worth noting that when the power flow equation for 
a reference (slack) bus is removed from (2), along with its bus 
variable θ, the resulting (reduced order) Jacobian does not 
have a zero eigenvalue. Moreover, it does not have the 
structure of a weighted Laplacian. This reduced order Jacobian 
is singular only when the operating point lies on the feasibility 
boundary [3]. 

We preserve the network structure by not omitting the 
reference bus in order to be able to draw direct analogies with 
spectral graph theory and use the latter in our study.  In our 
formulation, the Jacobian J, which is given by (3), is always 
singular with a single, trivial zero eigenvalue and 
corresponding eigenvector e = [1 1 … 1]T.  Nevertheless, the 
zero eigenvalue of J has multiplicity greater than one when 
the operating point lies on the feasibility boundary.  We use 
this criterion to ensure the vanishing power flow solution. A 
zero eigenvalue of J with multiplicity greater than one also 
means that the graph has been fragmented into subgraphs and, 
further, the buses in each subgraph can be discerned from the 
eigenvectors corresponding to the zero eigenvalue (Section II). 

B.  A Constrained Optimization Problem 
Conceptually, the problem we pose using the relaxed model 

is as follows. We aim to identify a small set of lines in the 
network whose (possibly partial) removals from service will 
make the feasibility boundary pass through the operating point 
P. At a solution to this problem, the system is on the verge of 
infeasibility. Complete removals of the identified lines may 
result in an immediate and dramatic system failure. We also 
need a mechanism to ensure that the resulting blackout is 
severe in some sense. In Section III-C we define a measure for 
blackout severity that is suitable for our purposes.  

Mathematically, the problem may be described in a 
constrained optimization framework as 

Operating point 
P1 

P2 

γ=1 γ= γ* 

γ=0 
(Line in) 

(Line out) 
(Line partially 
Out) 
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subject to: 
0)sin()( =!"! PAIBA

T #       (4) 

0=Jw
T               (5) 

0=ew
T               (6) 

1=ww
T               (7) 

ni
i

,,1,10 K=!! "          (8) 
( ) niA

i
,,1,2/2/ K=!!" #$#     (9) 

 
where Γ = diag(γ), as defined in (2), and the Jacobian J is as in 
(3). Constraint (5) ensures that J is singular and (6) guarantees 
that this singularity is due to a non-trivial zero eigenvalue by 
requiring ew ! .  Thus constraints (5)-(6), along with (4), 
place the operating point P on the feasibility boundary. The 
use of the normalization (7) for the eigenvector will become 
apparent in Section III-C, where we introduce a measure for 
the severity of a disturbance.  Finally, constraint (9) is 
required to ensure a steady state stable operation of the power 
network. 

    Recall from Section II that removal of a line appears in a 
weighted Laplacian as a zero weight. This is observed to 
happen from (3) whenever an element in the vector γ equals 1 
(direct removal of a line from the network), or when equality 
holds in (9), which corresponds to maximum possible power 
flowing through a line. The multiplicity of the zero eigenvalue 
of J gives us the number of subgraphs the graph is partitioned 
into, and the buses in each subgraph can be determined from 
the eigenvector w, as explained in Section II.   

An important issue now is to assess the severity of the 
disturbance resulting after the identified lines are taken out of 
service, in terms of the arguments of the optimization problem 
so that the optimization may be simultaneously constrained to 
identify solutions only corresponding to severe blackouts. 

C.  Severity of System Failure 
Blackout severity may be measured in various ways [6]. As 

the formulation described in Section III-B seeks to partition 
the network into groups in order to cause a failure, shortage or 
surplus of power within the resulting groups is a natural way 
to define a measure of severity for our purpose. In the case 
when the network is partitioned into two groups, the 
eigenvector w in (5)-(7) can be used to define such a measure 
of severity. In a two-group situation, a power imbalance 
measure of severity of the disturbance is then related to the 
shortage of power in one group after partitioning, which is 
identical in magnitude with the excess of power in the other 
group after partitioning, and with the net power flowing over 
the partition cut-set before partitioning. The derivation of the 
expression for disturbance severity in a two-group case 
follows.  

Referring to Figure 2, suppose there are m buses in the 
network and that the corresponding graph is partitioned into 
two subgraphs, one with k nodes and the other with m-k nodes.  
Let S denote the sum of power injections corresponding to the 

buses in group 1. Then, by the conservation of power, the sum 
of the power injections in group 2 is –S. Since the elements in 
the eigenvector w corresponding to nodes within a group are 
identical, assume, without loss of generality, that w has k 
elements equal to (m-k)/c and m-k elements equal to -k/c, 
where c is a constant to be determined. Note that constraint (6) 
is satisfied for such w and that from (7) it follows that 

)( kmkmc != . 

 

Figure 2: Power system network partitioned into two groups, 
one with excess generation and the other with excess load. 

The aim here is to obtain S in terms of w and P. Consider 
the inner product of vectors w and P, 

(wTP)2 = { ((m–k)/c)  (total power injection in group 1)  +    
(–k/c)  (total power injection in group 2) }2 

=  { ((m–k)/c) S + (–k/c)  (-S) }2 

            =  m2 S2 / c2.               (10) 

Also, 

! "=
i

i
mcmw /3/)( 224 .      (11) 

Solving for S2 in (10) and m2/c2 in (11), one can express S2 in 
terms of w and P as 

severity(w, P)  ≡  S2  =  
! +

i

i

T

mw

Pw

/3)(

)(

4

2

.   (12) 

Therefore, when a solution to the constrained optimization 
problem partitions the graph into two subgraphs, the 
eigenvector w gives a perfect measure of the severity of the 
power imbalance resulting from the removal of lines identified 
by the solution. The definition of severity as in (12) does not 
require knowledge of nodes within the subgraphs a priori, 
hence we append the additional constraint 

smin ≤ severity(w, P)       (13) 

to (4)-(9), where smin is a scalar representing the minimum 
value desired for the severity of the system disturbance. Thus 
we seek to obtain only those solutions which result in system 

S -S 

Excess generation Excess load 

Partition 
Cut-set 

Group 1 
k nodes 

Group 2 
m-k nodes 



 

partitions having power imbalances greater than 
min
s in 

magnitude. 

 The constrained optimization formulation presented in 
Section III-B, along with (13), seeks to minimize the 
(effective) number of line removals while ensuring the 
disturbance severity is greater than some threshold. 
Alternatively, the problem may be reformulated to maximize 
the severity while ensuring that the (effective) number of line 
removals is less than some threshold. 

We note that (13) is not necessarily an accurate measure of 
disturbance severity when a solution partitions the graph into 
three or more groups. We are currently investigating ways to 
extend this work. In this paper we focus on disturbances that 
essentially break the system into two parts. The results 
presented in Section IV correspond to cases when there are 
exactly two partitions. 

IV. TEST PROBLEM – THE IEEE 30 BUS SYSTEM 
The ideas outlined in Sections I-III are tested using the 

IEEE 30 bus system. This system has 6 generators and 41 
lines [7]. To solve the constrained optimization problems 
described in Section III, that is, with the objective of either 
minimizing the (effective) number of line removals, or 

maximizing the severity of the failure, we are currently using 
the solvers available from the NEOS server [8, 9], in 
particular, KNITRO [10, 11], IPOPT [12, 13] and LOQO [14]. 
These are interior-point methods for the solution of 
constrained optimization problems with nonlinear objective 
functions and/or constraints.  

A number of solutions have been found for which removal 
of a small number of lines (≤6) partitions the network into two 
groups, resulting in a severe failure in the sense defined in 
Section III-C. Figure 3 graphically presents one such solution, 
when a removal of four lines results in a power 
shortage/surplus of 8.43 p.u. in each group (island). Note that 
this power mismatch corresponds to a severity of 71.07 
(Section III-C).  

Given the solution vectors to the optimization problem 
(Sections III-B and C), namely γ, θ and w, one is able to 
readily identify from the latter the decomposition of the buses 
into the disjoint groups: buses 1 through 21, and 28 belong to 
one group, with the remaining buses lying in the other group. 
Recall also (Section III-B) that, in our formulation, lines in the 
partition cut-set are those for which either an element in γ is 
equal to 1, or the phase angle across them is ±π/2 (maximum 
power transfer). For the solution depicted in Figure 3, all lines

 

 
Figure 3: The IEEE 30 bus system partitioned into two groups, with a power shortage/surplus of 8.43 p.u. in each group. 

 



 

in the cut-set, namely those between buses 10-22, 21-22, 15-
23, and 27-28, have the phase angles across them equal to 
−π/2.  The corresponding elements in γ have the values 0.72, 
0.97, 0.54, and 0, respectively. There are two other lines 
identified by the solution as important, namely, those between 
buses 6-28 and 8-28, as their γi are 1 and 0.16 respectively. 
The phase angles across them are much less than π/2 in 
magnitude. These lines, however, do not lie on the partition 
cut-set. 

We emphasize that this exercise of solving the relaxed 
optimization problem provides us with a set of lines, much 
fewer in number than the total number of lines in the network, 
for further detailed analysis. For the case under consideration, 
this set comprises the lines between buses 10-22, 21-22, 15-
23, 27-28, 6-28 and 8-28. A detailed analysis may include 
either testing whether or not a feasible power flow solution 
exists when different subsets of lines from the aforementioned 
set are removed from the network (done by enumeration), or 
the use of more sophisticated tools, such as combinatorial 
algorithms. For instance, power flow solution existence test by 
enumeration provides the following observations. Power flow 
solution does not exist (at least locally) when the line between 
buses 27-28 is removed by itself. Moreover, removal of pairs 
of lines at a time, namely, between buses 10-22 and 21-22, 
between 21-22 and 15-23, and between 6-28 and 8-28, while 
keeping other lines intact, leads to power flow equation 
insolvability. Thus, the power system is most vulnerable to the 
operating statuses of these lines. Note that although the power 
flow solution (locally) does not exist, the graph remains 
connected. A measure of severity will be needed to isolate 
cases, out of the ones just described that produce large 
disturbances without partitioning the graph. The ensuing 
disturbances after the loss of the identified lines may be more 
or less severe than indicated by our severity function.  A 
detailed dynamic simulation including control and protection 
devices would be necessary for a detailed assessment. As 
previously noted, the simple measure described in Section III-
C is intended for screening purposes and is inadequate for 
detailed analysis. 

 
 

TABLE I 
PARTITIONING OF THE IEEE 30 BUS SYSTEM INTO TWO GROUPS 

 
Solution  severity(w, P)  Size of cut-set   trace(Γ)   # of buses 
     Id         (# of lines)         in groups  

      1 5.15     6     5.0920   12, 18 
      2 9.25     2     2.0383        5, 25 
      3 12.82    4     3.6787       8, 22 
      4 14.06    6     5.3235   12, 18 
      5 24.01    4     3.9106   11, 19 
      6 25.20    6     4.9997       9, 21 
      7 25.94    6     5.1301       8, 22 
      8 28.41    4     3.7554      7, 23 
      9 71.07    4     3.3811      8, 22 

 
Apart from the solution described by Figure 3, other 

solutions that partition the network into two groups have been 

found.  Specific features of these solutions are summarized in 
Table 1, where the list is arranged in increasing order by the 
value of the severity function.  Note that the size of the 
partition cut-sets ranges between 2 and 6 lines, so in each case 
the number of lines identified by a solution is much smaller 
than the total number of lines, i.e., 41, in the network.  The 
severity of the resulting system failure is reasonably large in 
each case, although there is no apparent correlation between 
the size of the cut-sets and the corresponding severity. 

V.  DISCUSSION AND CONCLUSIONS 
In this paper we have proposed a well-defined optimization 

problem to help screen for severe multiple contingencies.   
The approach appears effective in the small system we have 
studied and its properties should scale well. 

The computational burden involved in a complete 
enumeration of all possible combinations is greatly reduced 
using the screening process.  Our example contains 41 lines.  
A combinatorial analysis of all combinations of three 
simultaneous line outages would require 10,660 separate 
calculations.  After the screening process identifies, say, six 
lines, the combinations reduce to 20.   

Our screening process is essentially a graph partitioning 
algorithm.  One can generally expect that a largely planar 
graph with n branches will separate with a cut-set of size n .  
Given a model of 10,000 lines, a screening process that yields 
100 lines of interest will enable combinatorial analysis using 
very fast computers.  (A combinatorial analysis of three events 
reduces from 1.6x1011 to 161,700.  A supercomputer with 
10,000 processors could handle the latter easily, but the former 
remains impossible.) 

There are some impediments to this approach that require 
further research.  The optimization problem is nonconvex.  
The results of this are clearly seen in the results presented in 
Table I. We are presently seeking ways to promote 
convergence to solutions with reasonably high severities.  
Nevertheless, the solutions that are found that satisfy the 
stated severity level are interesting in their own right, even 
though they may not be the most severe. 

The model used in the screening process is crude.  It 
neglects voltage variations and reactive power considerations.  
We intend to extend the approach to consider these issues.  If 
we ignore the severity function, the extension in the 
optimization framework is straightforward; however, the 
structure of the problem loses the direct relations to spectral 
graph theory.  The solutions found will be on the edge of a 
region of feasibility.  Incorporating a severity function into the 
optimization problem is important so as to avoid trivial or 
solutions of little consequence.  A new severity function will 
need to be developed to replace the one in this paper, which 
has roots in spectral graph theory. 

Since our screening process is a graph partitioning 
algorithm, it is essential to consider other alternatives to the 
optimization approach followed here.  We are doing so, but 
the reader should recognize that this problem falls outside the 



 

realm of traditional graph partitioning algorithms.  It is a dual 
objective problem. We wish to minimize the number of cuts 
while simultaneously ensuring that the power disrupted by 
such a cut exceeds a predefined value.  Despite the language 
used in this description, this problem should not be confused 
with the well-known min-cut, max flow problem in which the 
maximum flow between two points can be determined by 
finding the minimum weighted cut that separates the points.  
Our problem is very different (we do not know the points a 
priori, for instance) and it is more difficult.  We have not yet 
identified or developed any graph partitioning algorithms that 
work better for this problem than the approach in this paper, 
but we continue to pursue this avenue of research.   

APPENDIX 
This appendix lists the IEEE 30 bus system parameters used 

for the study presented in this paper. The system is assumed to 
be lossless and the reactive power flows are ignored. 

 
TABLE II 

BUS DATA FOR THE IEEE 30 BUS SYSTEM 
 
Bus number    Active power    Active power 
         generation (MW)   load (MW) 

1        135.4       000.0 
2        209.7       217.0 
3        000.0       024.0 
4        000.0       076.0 
5        000.0       000.0 
6        000.0       000.0 
7        000.0       228.0 
8        000.0       300.0 
9        000.0       000.0 
10      000.0       058.0 
11      000.0       000.0 
12      000.0       112.0 
13      410.0       000.0 
14      000.0       062.0 
15      000.0       082.0 
16      000.0       035.0 
17      000.0       090.0 
18      000.0       032.0 
19      000.0       095.0 
20      000.0       022.0 
21      000.0       175.0 
22      315.9       000.0 
23      342.0       032.0 
24      000.0       087.0 
25      000.0       000.0 
26      000.0       035.0 
27      469.1       000.0 
28      000.0       000.0 
29      000.0       024.0 
30      000.0       106.0 

 
TABLE III 

LINE DATA FOR THE IEEE 30 BUS SYSTEM 
 
From Bus number  To Bus number   Line Reactance 
                    (p.u.) 

1         2          0.06 
1         3          0.19 
2         4          0.17 
3         4          0.04 
2         5          0.20 
2         6          0.18 
4         6          0.04 
5         7          0.12 
6         7          0.08 
6         8          0.04 
6         9          0.21 
6         10        0.56 
9         11        0.21 
9         10        0.11 
4         12        0.26 
12       13        0.14 
12       14        0.26 
12       15        0.13 
12       16        0.20 
14       15        0.20 
16       17        0.19 
15       18        0.22 
18       19        0.13 
19       20        0.07 
10       20        0.21 
10       17        0.08 
10       21        0.07 
10       22        0.15 
21       22        0.02 
15       23        0.20 
22       24        0.18 
23       24        0.27 
24       25        0.33 
25       26        0.38 
25       27        0.21 
27       28        0.40 
27       29        0.42 
27       30        0.60 
29       30        0.45 
8         28        0.20 
6         28        0.06 
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